
Journal of Approximation Theory 139 (2006) 346–370
www.elsevier.com/locate/jat

On the limit behavior of recurrence coefficients for
multiple orthogonal polynomials

A.I. Aptekareva, V. Kalyaginb, G. López Lagomasinoc,∗, I.A. Rochad

aKeldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow, Russia
bHigher School of Economics, Nizhny Novgorod, Russia

cDepartamento de Matemáticas, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Madrid,
Spain

dDepartamento de Matemática Aplicada, E.U.I.T. Telecomunicación, Universidad Politécnica de Madrid, Ctra. de
Valencia Km. 7, 28031 Madrid, Spain

Received 24 March 2005; accepted 26 September 2005

Communicated by Arno B.J. Kuijlaars
Available online 15 November 2005

Dedicated to Barry Simon on the occasion of his sixtieth birthday

Abstract

In this paper we investigate general properties of the coefficients in the recurrence relation satisfied by
multiple orthogonal polynomials. The results include as particular cases Angelesco and Nikishin systems.
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1. Introduction

Let �1, �2, . . . , �m be a system of Borel measures with constant sign supported on the real line.
For a given multi-index n = (n1, n2, . . . , nm) ∈ Zm+, the multiple orthogonal polynomial Qn(x)
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is defined by the conditions

deg Qn �n :=
m∑

k=1

nk, (1)

∫
Qn(x)x� d�k(x) = 0, � = 0, 1, . . . , nk − 1, k = 1, . . . , m. (2)

It is well known that Qn(x) is the common denominator of the Hermite–Padé vector rational
approximant

�n(z) :=
(

Pn,1(z)

Qn(z)
, . . . ,

Pn,m(z)

Qn(z)

)

for the system of Markov functions (̂�1, . . . , �̂m), where �̂k(z) =
∫

d�k(x)

z − x
, k = 1, . . . , m. This

approximant is defined by the conditions

(i) deg Qn �n = n1 + · · · + nm, Qn �= 0,

(ii) Qn(z)̂�k(z) − Pn,k(z) = O
(

1
znk+1

)
, z → ∞, k = 1, . . . , m.

For m = 1 one obtains standard orthogonal polynomials. In the general case, m > 1, the
multiple orthogonal polynomial Qn exists for any multi-index but it may not be unique. We say
that the multi-index n = (n1, n2, . . . , nm) is normal if any polynomial Qn satisfying (1)–(2) has
deg Qn = n. For a normal multi-index n the orthogonal polynomial is unique up to a constant
factor so the monic polynomial is unique. If, additionally, the zeros of Qn are real and simple, we
say that the multi-index n is strongly normal.

Multiple orthogonal polynomials are known to be a useful tool, not only in the study of Hermite–
Padé rational approximation, but also in analytic number theory, non-symmetric banded difference
operators, random matrices, and other directions (see [4,6,15]).

Recurrence relation. Unless otherwise stated, throughout the paper we restrict to the family of
multi-indices

I := {(0, . . . , 0), (1, 0, . . . , 0), (1, 1, 0, . . . , 0), . . . , (1, 1, . . . , 1), (2, 1, . . . , 1), . . .}.
Any multi-index n in the step-line I may be identified by the value of n = n1 + n2 + · · · + nm. In
fact, if n = km + s, 0�s�m − 1, the corresponding index is n = (k + 1, . . . , k + 1, k, . . . , k)

where the value k + 1 is repeated s times. If the multi-indices of I are all normal, an immediate
consequence of the orthogonality conditions (2) is that the associated monic multiple orthogonal
polynomials, denoted here simply by Qn, satisfy the recurrence relation

Q−m(x) = · · · = Q−1(x) = 0, Q0(x) = 1,

xQn(x) = Qn+1(x) + an,nQn(x) + an,n−1Qn−1(x) + · · ·
+ an,n−mQn−m(x), n = 0, 1, 2, . . . (3)

(for more details, see Section 4.1). These relations are a direct generalization for the multiple
orthogonal case of the well known three-term recurrence relations satisfied by orthogonal poly-
nomials.
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Banded Hessenberg operators. The recurrence relation (3) gives rise to a difference operator
on the space l2(N) defined in the canonical basis by the matrix

A = (ai,j )
∞
i,j=0, ai,j = 0, j > i + 1, i > j + m, ai,i+1 = 1, i = 0, 1, . . . . (4)

This is a non-symmetric (m + 2) diagonal lower Hessenberg matrix. A very important point is
that the spectral properties of this operator are closely connected with the asymptotic properties
of the multiple orthogonal polynomials (see [4]). In particular, one can consider the system of
measures �1, �2, . . . , �m generating the relations (3) as the system of spectral measures of the
associated Hessenberg operator. This implies the possibility of stating and investigating direct
and inverse spectral and scattering problems for this class of operators using advanced results for
multiple orthogonal polynomials.

Angelesco and Nikishin systems. In [12], Gonchar, Rakhmanov and Sorokin consider a wide
class of multiple orthogonal polynomials defined by systems of measures (�1, . . . , �m) with the
following extreme cases: Nikishin systems in which all the measures have the same support,
and Angelesco systems in which the measures are supported on disjoint intervals of the real line
�1, . . . , �m.

For the formal definition of Angelesco systems no more specifications on the measures are
needed. Nikishin systems of measures (�1, . . . , �m) are defined as follows (we use the notation
proposed in [12]).

Let �1, �2 be two finite Borel measures with constant sign whose supports supp(�1), supp(�2)

are contained in non-intersecting intervals �1, �2, respectively, of the real line R. Set

d〈�1, �2〉(x) =
∫

d�2(t)

x − t
d�1(x).

This expression defines a new measure with constant sign whose support coincides with that of
�1. Let (�1, . . . , �m) be a system of finite Borel measures with constant sign and compact support
on the real line. Let �k denote the smallest interval which contains the support of �k and assume
that �k ∩ �k+1 = ∅, k = 1, . . . , m − 1. The system (�1, . . . , �m) defined by

�1 = �1, �2 = 〈�1, �2〉, . . . , �m = 〈�1, 〈�2, . . . , �m〉〉

is called the Nikishin system generated by �1, . . . , �m and we write (�1, . . . , �m) = N (�1, . . . ,

�m). The corresponding polynomial Qn defined for each multi-index n = (n1, . . . , nm) by the
orthogonality conditions (1)–(2) is called the Nikishin polynomial of multiple orthogonality. We
wish to say that in the construction of a Nikishin system, consecutive intervals �k may be allowed
to have a common end point if the measures �k are such that the measures �k which they define
are finite. Then all the results remain valid. This remark should be taken into consideration in the
example at the end of the paper.

In Angelesco’s case, any multi-index n = (n1, . . . , nm) is strongly normal and the correspond-
ing orthogonal polynomial is of degree n = n1 + · · · + nm with nk simple zeros in the interior
of �k, k = 1, . . . , m (in reference to the interior of intervals we take the Euclidean topology of
R). For Nikishin polynomials in [10] it was proved that when m�3 all multi-indices are strongly
normal but for m > 3 the problem of the normality for an arbitrary multi-index is still open.
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Nevertheless, it is known (see [8,12]) that all multi-indices in

Zm+(�) = {n ∈ Zm+ : 1� i < j �m ⇒ nj �ni + 1}

are strongly normal and the corresponding orthogonal polynomials have all their zeros in the
interior of �1. In particular, all indices of I are normal since I ⊂ Zm+(�). Thus the recurrence
relation (3) is satisfied for at least Nikishin and Angelesco multiple orthogonal polynomials.

Strong asymptotic of Angelesco and Nikishin orthogonal polynomials were obtained in [1,3],
respectively, assuming Szegő’s condition on the measures. For Nikishin systems, ratio asymptotic
was given in [5] when �′

k > 0, a.e. on �k, k = 1, . . . , m. Though both families have ratio
asymptotic under rather general assumptions on the measures, the limit functions are not known
explicitly and the asymptotic behavior of the coefficients in the recurrence relation (3) is also
unknown.

In this paper, we investigate some properties of the recurrence coefficients and of the banded
Hessenberg operator defined by them. General conditions on the system of measures are assumed
that cover Angelesco and Nikishin systems.

Our first result relates the bound of the recurrence coefficients with some properties of the zeros
of the associated multiple orthogonal polynomials.

Theorem 1.1. Suppose that for a given system of measures (�1, �2, . . . , �m), all indices of I
are strongly normal and the zeros of Qn−1 and Qn interlace for n�n0. Then the recurrence
coefficients in (3) are uniformly bounded if and only if the zeros of Qn, n�n0, lie on a bounded
interval.

This result implies the following corollaries.

Corollary 1.1. The recurrence coefficients of an Angelesco system (�1, . . . , �m) are uniformly
bounded if and only if the supports of the measures �k , k = 1, . . . , m, are compact.

Corollary 1.2. The recurrence coefficients of a Nikishin system (�1, . . . , �m) = N (�1, . . . ,

�m) are uniformly bounded if and only if �1 has compact support.

Remark 1.1. In the case of only one measure, Angelesco and Nikishin systems coincide, mul-
tiple orthogonal polynomials reduce to orthogonal polynomials, and the associated Hessenberg
operator is a tridiagonal Jacobi operator. It is known that the zeros of orthogonal polynomials
are real, simple, and the zeros of Qn−1 and Qn interlace for n�1. In this case, Theorem 1.1
reduces to the well known result that a Jacobi operator is bounded if and only if the zeros of the
corresponding orthogonal polynomials lie on a bounded interval (see [7]).

Remark 1.2. For a banded Hessenberg operator the entries an,n−j , n�0, j = −1, 0, 1, . . . ,

m, are uniformly bounded if and only if the associated operator is bounded in the Hilbert space
l2(N). Theorem 1.1 and its corollaries may be stated as results of bounding properties of operators.
For example, the following assertion is true: the operator associated with an Angelesco system
is bounded if and only if the supports of the measures �j , j = 1, 2, . . . , m, are compact; and
the operator associated with a Nikishin system is bounded if and only if the support of the first
measure of the system is compact.
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Our second result is related with the limit behavior of the recurrence coefficients for multiple
orthogonal polynomials.

Theorem 1.2. Suppose that for a given system of measures (�1, �2, . . . , �m), all indices in I are
strongly normal and the zeros of Qn−1 and Qn interlace for n�n0. Then, there exist limits with
period p ∈ N of the recurrence coefficients in (3), i.e. for each i ∈ {0, 1, 2, . . . , p − 1} and
j ∈ {0, 1, 2, . . . , m} there exists

lim
k→∞ apk+i,pk+i−j = a0

i,−j ,

if and only if there exist analytic functions Fi, i = 0, 1, . . . , p−1, and a bounded interval � ⊂ R,
containing the zeros of all the polynomials Qn, such that

lim
k→∞

Qkp+i+1(x)

Qkp+i (x)
= Fi(x), K ⊂ C\�,

uniformly on each compact subset K of the indicated region.

Under the assumptions of Theorem 1.2, from Theorem 1.1, we know that there exists a smallest
bounded interval � ⊂ R which contains the zeros of all the polynomials Qkp+i . On the other
hand, the interlacing property yields that for each i = 0, . . . , p − 1, the family of functions
{Qkp+i+1/Qkp+i}, k ∈ Z+, is normal on C\�. Therefore, the limit of these ratios takes place
uniformly on each compact subset of C\� if and only if they hold on a neighborhood of ∞.

Corollary 1.3. Let (�1, . . . , �m) = N (�1, . . . , �m) and �′
k > 0 almost everywhere on �k,

1�k�m. Then, for each i ∈ {0, 1, 2, . . . , m − 1} and j ∈ {0, 1, 2, . . . , m} there exists

lim
k→∞ amk+i,mk+i−j = a0

i,−j .

The values of a0
i,−j only depend on the system of intervals �k, k = 1, 2, . . . , m.

Notice that in Nikishin systems, in general, the period is p = m. The same occurs with
Angelesco systems (see [13]). Nevertheless, eventually, other periods may occur.

Remark 1.3. In terms of the associated banded Hessenberg operators, the Corollary above may
be stated as follows. Define the entries a0

l,s of a reference Hessenberg operator A0 by

a0
k,k+1 = 1, a0

mk+i,mk+i−j = a0
i,−j , k = 0, 1, 2, . . . , i = 0, 1, 2, . . . , m − 1,

j = 0, 1, 2, . . . , m

(the rest of the entries equal zero). Then any banded Hessenberg operator associated with a
Nikishin system whose measures have the same system of intervals �k , k = 1, 2, . . . , m, and
�′

k > 0 almost everywhere on �k , is a compact perturbation of the reference operator A0.

Remark 1.4. In the case m = 1 (one measure �) there is a famous result by Rakhmanov which
states that if �′ > 0 almost everywhere on supp(�) = [−1, 1] then the associated Jacobi operator is
a compact perturbation of the reference operator A0 with a0

n,n+1 = 1, a0
n,n = 0, and a0

n,n−1 = 1/4
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(period m = 1). For Angelesco systems, the analogue of Corollary 1.3 may be established if the
measures defining the Angelesco system satisfy Szegő’s condition. In this case, ratio asymptotic is
obtained as a consequence of the strong asymptotic proved for Angelesco systems by Aptekarev in
[1] (see also [13]). The question of whether or not Angelesco systems have ratio asymptotic when
�′

k > 0, k = 1, . . . , m, a.e. on �k remains open. Another question of interest in both Angelesco
and Nikishin systems is to obtain at least some implicit equations connecting the limit values of
the recurrence coefficients and the extreme points of the intervals �k .

The paper is organized as follows. In Section 2, we prove two general Lemmas which imply
Theorem 1.1 and its corollaries. Section 3 is devoted to the proof of Theorem 1.2 which is in
fact a variation of the direct and inverse Poincaré theorem for recurrence equations. Corollary
1.3 is derived from Theorem 1.2 using a recent result (see [5]) on ratio asymptotic of multiple
orthogonal polynomials for Nikishin systems. Finally, in Section 4, we describe some extensions
of the previous results and present examples of explicit values for the limits a0

i,−j of Angelesco
and Nikishin systems when m = 2.

2. Bounding properties of the recurrence coefficients

The proof of Theorem 1.1 is a combination of the following two lemmas.

Lemma 2.1. Let {Qn}∞n=0 be the sequence of monic polynomials defined by the recurrence rela-
tion (possibly with complex coefficients)

xQn = Qn+1 + an,nQn + an,n−1Qn−1 + · · · + an,n−mQn−m, n = 0, 1, . . .

with initial conditions Q0 = 1, Q−1 = Q−2 = · · · = Q−m = 0. If the recurrence coefficients
an,n−j , n = 0, 1, 2, . . . , j = −1, 0, 1, 2, . . . , m (an,n+1 = 1) are uniformly bounded and

M := sup
n,j

|an,n−j | < ∞,

then, for n = 0, 1, . . ., the zeros of the polynomials Qn lie in the disk |x|�(m + 2)M .

Proof. Let us consider the matrix of order n + 1

An :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0,0 1 0 . . . 0

a1,0 a1,1 1 . . . 0

. . . . . . . . . . . . . . .

am,0 am,1 am,2 . . . 0

0 am+1,1 am+1,2 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . an,n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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The eigenvalue problem for the matrix An reads as Any = �y for some non-zero vector y =
(y0, y1, . . . , yn)

t . This gives the following system of equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0,0y0 + y1 = �y0,

a1,0y0 + a1,1y1 + y2 = �y1,

. . . . . . . . . . . . . . . ,

an−1,n−1−myn−1−m + . . . + an−1,n−1yn−1 + yn = �yn−1,

an,n−myn−m + . . . . . . . . . + an,nyn = �yn.

If we set y0 = 0 the only solution for this system is the trivial one. To find a non-trivial solution,
we put y0 = 1 and we get from the first n equations of the system

y1 = Q1(�), y2 = Q2(�), . . . , yn = Qn(�).

Thus, the last equation is satisfied if and only if Qn+1(�) = 0. This means that the zeros of Qn+1
are exactly the eigenvalues of An. It is well known that the spectral radius of An is bounded above
by the operator norm of An induced by any vector norm. Taking the sup norm on the vectors, for
the zeros xn+1,j of Qn+1, we obtain

max{|xn+1,j | : j = 1, . . . , n + 1, n = 0, 1, . . .}�(m + 2)M

and the Lemma is proved. �

Lemma 2.2. Let {Qn}∞n=0 be a sequence of monic polynomials such that:

(i) for each n = 0, 1, . . . , Qn has exactly n simple zeros which lie on a bounded interval � ⊂ R,
(ii) for each n = 0, 1, . . ., between two consecutive zeros of Qn+1 there is one zero of Qn,

(iii) the polynomials satisfy the (m + 2)-term recurrence relation

xQn(x) = Qn+1(x) + an,nQn(x) + an,n−1Qn−1(x) + · · · + an,n−mQn−m(x),

n = 0, 1, . . . .

Then, there are positive constants C(k), k = 0, . . . , m, such that |an,n−k|�C(k) for all n.

Proof. Since the zeros interlace, for every compact set K ⊂ C\� and each integer j , there is

a positive constant Mj(K) such that |Qn+j (x)

Qn(x)
|�Mj(K), x ∈ K , for all n. Moreover, from the

recurrence relation we get

x = Qn+1(x)

Qn(x)
+ an,n + an,n−1

Qn−1(x)

Qn(x)
+ · · · + an,n−m

Qn−m(x)

Qn(x)
,

which means that

lim
x→∞

(
x − Qn+1(x)

Qn(x)

)
= an,n.
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Take r > 0 such that the circle �r = [|z| = r|] contains the interval � in its interior. We obtain

an,n = 1

2�i

∫
�r

(
z − Qn+1(z)

Qn(z)

)
dz

z
= − 1

2�i

∫
�r

Qn+1(z)

Qn(z)

dz

z

which yields |an,n|�M1(�r ) = C(0).
Let us assume that |an,n−j |�C(j), j = 0, . . . , k − 1, k�m, and let us prove that the same is

true for |an,n−k|. We can write

x
Qn(x)

Qn−k(x)
= Qn+1(x)

Qn−k(x)
+

k−1∑
j=0

an,n−j

Qn−j (x)

Qn−k(x)
+ an,n−k +

m∑
j=k+1

an,n−j .
Qn−j (x)

Qn−k(x)
.

Thus

an,n−k = lim
x→∞

⎛⎝x
Qn(x)

Qn−k(x)
− Qn+1(x)

Qn−k(x)
−

k−1∑
j=0

an,n−j

Qn−j (x)

Qn−k(x)

⎞⎠

= 1

2�i

∫
�r

⎛⎝z
Qn(z)

Qn−k(z)
− Qn+1(z)

Qn−k(z)
−

k−1∑
j=0

an,n−j

Qn−j (z)

Qn−k(z)

⎞⎠ dz

z

which gives the estimate

|an,n−k|�rMk(�r ) + Mk+1(�r ) +
k−1∑
j=0

C(j)Mk−j (�r ) = C(k)

and the proof is complete. �

Proof of Corollary 1.1. It is well known and easy to verify (see, for example, [15]) that in an
Angelesco system for any multi-index n = (n1, n2, . . . , nm) the multiple orthogonal polynomial
Qn has exactly nj simple zeros in the interior of the interval �j and thus n is strongly normal.
We conclude the proof if we show that the interlacing property takes place. This is a consequence
of the following lemma which we state in a form appropriate for other applications. Let n ∈ Zm+.
Denote

nl := (n1, n2, . . . , nl + 1, . . . , nm).

Lemma 2.3. Let l ∈ {1, 2, . . . , m} and n, nl be strongly normal with respect to the vector mea-
sure (�1, �2, . . . , �m). If for every a ∈ R, n is also normal with respect to the vector measure
(�1, �2, . . . , �m), where d�j (x) = (x − a)2 d�j (x), j = 1, . . . , m, then between any two consec-
utive zeros of Qnl there is exactly one zero of Qn.

Proof. Consider the polynomial P = AQn + BQnl where A and B are constants such that
|A| + |B| > 0. Suppose that P has a double zero at a ∈ R. Then

AQn + BQnl = (x − a)2R, deg R�(n − 1).

The polynomial R satisfies the orthogonality conditions for the multi-index n with respect to the
system of measures (�1, . . . , �m). This is impossible because deg R�n− 1 and is not identically
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zero. Thus, for any constants A, B, |A|+ |B| > 0, the polynomial P has only simple zeros on the
real line. For a fixed value of y, consider the polynomial

Py(x) := Qnl (y)Qn(x) − Qn(y)Qnl (x).

This polynomial has a zero at the point x = y; consequently, its derivative cannot be equal to
zero at the same point. This means that for all y ∈ R

Qnl (y)Q′
n(y) − Qn(y)Q′

nl (y) �= 0.

Therefore, this expression has constant sign on all R. This implies that Qn has opposite signs at
consecutive zeros of Qnl . Lemma 2.3 follows and Corollary 1.1 is proved on account of what was
said above concerning strong normality of multi-indices for Angelesco systems and the fact that
if (�1, �2, . . . , �m) is an Angelesco system so is (�1, �2, . . . , �m). �

Proof of Corollary 1.2. Let

n ∈ Zm+(∗) = {n ∈ Zm+ :� ∃ 1� i < j < k�m with ni < nj < nk}.
In [9] it was proved that all n ∈ Zm+(∗) ⊃ I are strongly normal, the zeros of the corresponding
Nikishin multiple orthogonal polynomials lie in the interior of �1 and satisfy the interlacing
property. Thus, Theorem 1.1 applies to Nikishin systems and the corollary follows. �

Remark 2.1. For a Nikishin system (�1, . . . , �m) = N (�1, �2, . . . , �m), the interlacing prop-
erty may also be derived from Lemma 2.3 since (�1, . . . , �m) = N ((x − a)2d�1, d�2, . . . ,

d�m) is also a Nikishin system. For such systems not only the polynomials corresponding to
indices in Zm+(∗) interlace their zeros, but also the functions of second kind defined inductively
by

�n,0(z) = Qn(z), �n,k(z) =
∫

�n,k−1(x)

z − x
d�k(x), k = 1, . . . , m.

For n ∈ Zm+(�) ⊂ Zm+(∗) this was proved in [5].

3. Existence of limits for the recurrence coefficients

Proof of Theorem 1.2. The combination of Lemmas 3.1 and 3.2 proves this theorem.

Lemma 3.1. Let {Qn}∞n=0 be a sequence of monic polynomials defined by the recurrence relations
(possibly with complex coefficients)

xQn = Qn+1 + an,nQn + an,n−1Qn−1 + · · · + an,n−mQn−m, n = 0, 1, . . . ,

with initial conditions Q0 = 1, Q−1 = Q−2 = · · · = Q−m = 0 and assume that for each
i = 0, . . . , p − 1, there exist analytic functions Fi(x) and a positive constant R0 such that

lim
k→∞

Qpk+i+1(x)

Qpk+i (x)
:= Fi(x) = x + F

(i)
0 + F

(i)
1

x
+ F

(i)
2

x2
+ · · · , |x|�R0,

uniformly on each compact subset of D = {x ∈ C : |x| > R0}. Then, there exist limits with period
p of the recurrence coefficients.
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Proof. For each i ∈ {0, . . . , p − 1}, the function Fi(x) is analytic in D with a simple pole at
infinity. This implies that, for some n0 ∈ N and n�n0 the zeros of all the polynomials Qn lie in
the bounded disk {x ∈ C : |x|�R0 + 1}. First, we write the power series at infinity for the ratio
of the polynomials in the form

Qpk+i+1(x)

Qpk+i (x)
= x + [F (i)

0 + �(i)
0,k] + [F (i)

1 + �(i)
1,k]

x
+ [F (i)

2 + �(i)
2,k]

x2
+ · · · , |x|�R0.

Ratio asymptotic implies that �(i)
r,k → 0 if k → ∞ for each fixed r and i. Now, we write down the

recurrence relation as follows

m∑
j=0

Qpk+i−j (x)apk+i,pk+i−j = xQpk+i (x) − Qpk+i+1(x)

and, dividing it by Qpk+i (x), we have

m∑
j=0

Qpk+i−j (x)

Qpk+i (x)
apk+i,pk+i−j = x − Qpk+i+1(x)

Qpk+i (x)
.

For apk+i,pk+i this means

apk+i,pk+i = x − Qpk+i+1(x)

Qpk+i (x)
−

m∑
j=1

Qpk+i−j (x)

Qpk+i (x)
apk+i,pk+i−j .

Letting x → ∞, we get

apk+i,pk+i = lim
x→∞

(
x − Qpk+i+1(x)

Qpk+i (x)

)
= −[F (i)

0 + �(i)
0,k]

which gives the existence of the limit for apk+i,pk+i and the formulas

lim
k→∞ apk+i,pk+i = −F

(i)
0 , i = 0, . . . , p − 1.

To obtain the limit of apk+i,pk+i−1 we write the equation

Qpk+i−1(x)

Qpk+i (x)
apk+i,pk+i−1

=
(

x − Qpk+i+1(x)

Qpk+i (x)
− apk+i,pk+i

)
−

m∑
j=2

Qpk+i−j (x)

Qpk+i (x)
apk+i,pk+i−j .

Multiplying by x and making x → ∞ leads to

apk+i,pk+i−1 = lim
x→∞ x

(
x − Qpk+i+1(x)

Qpk+i (x)
− apk+i,pk+i

)
= −[F (i)

1 + �(i)
1,k]

and one has the formulas

lim
k→∞ apk+i,pk+i−1 = lim

k→∞ −[F (i)
1 + �(i)

1,k] = −F
(i)
1 , i = 0, . . . , p − 1.
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Analogously, we obtain the following expression for the coefficients apk+i,pk+i−2

apk+i,pk+i−2 = lim
x→∞ x2

(
x − Qpk+i+1(x)

Qpk+i (x)
− apk+i,pk+i − Qpk+i−1(x)

Qpk+i (x)
apk+i,pk+i−1

)
= −[(F (i)

2 + �(i)
2,k) + (F

(i)
1 + �(i)

1,k)(F
(i−1)
0 + �(i−1)

0,k )]
and we get

lim
k→∞ apk+i,pk+i−2 = lim

k→∞ −[(F (i)
2 + �(i)

2,k) + (F
(i)
1 + �(i)

1,k)(F
(i−1)
0 + �(i−1)

0,k )]

= −[F (i)
2 + F

(i)
1 F

(i−1)
0 ], i = 0, . . . , p − 1.

Repeating the arguments we obtain the existence of the limits as k → ∞ of the recurrence
coefficients apk+i,pk+i−j for j = 3, 4, . . . , m and the lemma is proved. �

Lemma 3.2. Let {Qn}∞n=0 be a sequence of monic polynomials defined by the recurrence relations

xQn = Qn+1 + an,nQn + an,n−1Qn−1 + · · · + an,n−mQn−m, n = 0, 1, . . . ,

with initial conditions Q0 = 1, Q−1 = Q−2 = · · · = Q−m = 0. Suppose that for each
n ∈ Z+, Qn has exactly n real simple zeros which interlace those of Qn+1. Assume that for each
i ∈ {0, 1, 2, . . . , p − 1} and j ∈ {0, 1, 2, . . . , m} there exists

lim
k→∞ apk+i,pk+i−j = a0

i,−j . (5)

Then, there exist analytic functions Fi(x), i = 0, 1, . . . , p − 1, and an interval � ⊂ R such that

lim
k→∞

Qpk+i+1(x)

Qpk+i (x)
= Fi(x), K ⊂ C\�,

uniformly on each compact subset K of the indicated region.

Proof. From Lemma 2.1 we know that the zeros of the polynomials Qn are uniformly bounded and
from hypothesis they lie on the real line. Let � be the smallest interval containing the zeros of all
these polynomials. From the interlacing property, it follows that for each i ∈ {0, 1, 2, . . . , p − 1}
the family {Qpk+i+1/Qpk+i}, k ∈ Z+, is normal in C\�. Therefore, to prove the lemma it is
sufficient to show that any convergent subsequence has the same limit. This is done, for example,
by showing that all limit functions have the same Laurent expansion at infinity which is what we
will do.

Fix i ∈ {0, 1, 2, . . . , p − 1}. For short, we denote R
(i)
k = Qpk+i+1/Qpk+i and

R
(i)
k (x) = x + R

(i)
0,k + R

(i)
1,k

x
+ R

(i)
2,k

x2
+ · · · .

Since the family of functions {R(i)
k }, k ∈ Z+, is normal in C\�, from Cauchy’s formula for the

coefficients of a Laurent expansion it follows that for each r ∈ Z+ the sequence of coefficients
{R(i)

r,k}, k ∈ Z+, is uniformly bounded. Using induction on the index r we will prove that for each

r ∈ Z+ there exists limk→∞ R
(i)
r,k .
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Let r = 0. We can write the recurrence relation in the form

Qpk+i+1(x)

Qpk+i (x)
= x − apk+i,pk+i −

m∑
j=1

Qpk+i−j (x)

Qpk+i (x)
apk+i,pk+i−j . (6)

All the terms in the summation sign have a zero at infinity; therefore, R
(i)
0,k = −apk+i,pk+i and

lim
k→∞ R

(i)
0,k = −a0

i,0.

Moreover, i ∈ {0, . . . , p − 1} was arbitrary; therefore, the same is true for each i. With this we
settle the first step in the induction. Let us assume that for each i ∈ {0, . . . , p − 1}, there exists
limk→∞ R

(i)
r,k, r = 0, . . . , �, ��0. We must show that this is also true for r = � + 1.

Take r = �+1, and again we fix i ∈ {0, . . . , p−1}. Let us make some reductions. The sequence
of coefficients {R(i)

�+1,k}, k ∈ Z+, is uniformly bounded. Let � be a subsequence of indices such

that there exists limk∈� R
(i)
�+1,k . The whole sequence of functions {Qn+1/Qn}, n ∈ Z+, is normal

on C\�, passing to a subsequence, if necessary, we may assume without loss of generality that �
is such that for all j ∈ {0, 1, 2, . . . , m}

lim
k∈�

R
(i−j)
k (x) = lim

k∈�

Qpk+i−j+1(x)

Qpk+i−j (x)
= Fi−j (�; x) = x + F

(i−j)

0 + F
(i−j)

1

x

+F
(i−j)

2

x2
+ · · · .

For the time being, the coefficients on the right hand may depend on �. We do not write the de-
pendence to simplify the notation. Nevertheless, from the induction hypothesis and the normality
of {Qn+1/Qn}, n ∈ Z+, we know that

lim
k→∞ R

(i−j)
r,k = F

(i−j)
r , r = 0, . . . , �, j = 0, 1, 2, . . . , m, (7)

which do not depend on �. So the first � + 1 coefficients of each one of these expansions are free
from this dependence.

Notice that

Qpk+i−j (x)

Qpk+i (x)
= Qpk+i−j (x)

Qpk+i−j+1(x)

Qpk+i−j+1(x)

Qpk+i−j+2(x)
· · · Qpk+i−1(x)

Qpk+i (x)
.

Thus,

lim
k∈�

Qpk+i−j (x)

Qpk+i (x)
= 1

Fi−j (�; x)Fi−j+1(�; x) · · · Fi−1(�; x)
, j �1,

and using (6), we obtain the equation

Fi(�; x) = x − a0
i,0 −

m∑
j=1

a0
i,−j

Fi−j (�; x)Fi−j+1(�; x) · · · Fi−1(�; x)
. (8)

This relation allows us to determine F
(i)
�+1 = limk∈� R

(i)
�+1,k and show that the limit is independent

of �. In fact, F
(i)
�+1 is the sum of the coefficients corresponding to x−(�+1) of the expansion at

infinity of the terms on the right-hand side of this equation.
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Consider an expansion at infinity of the form

F(x) = x + F0 + F1

x
+ F2

x2
+ · · · .

Let

G(x) = G1

x
+ G2

x2
+ · · · (9)

be such that F(x)G(x) ≡ 1. From the definition of G(x) we have that G1 = 1 and

G�+1 = −(G1F�−1 + G2F�−2 + · · · + G�F0), ��1.

This triangular scheme indicates that G�+1 can be expressed as the sum of products of the co-
efficients Fk, k = 0, . . . , � − 1 (since G1, . . . , G� can also be expressed in that form). When
we multiply two or more functions of the form (9) and expand their product at infinity, each
coefficient can be expressed as the sum of products of coefficients corresponding to lower powers
of 1/x of the functions being multiplied. Using (8), this means that F

(i)
�+1 can be expressed in

terms of a0
i,−j , j = 0, 1, 2, . . . , m, and F

(i−j)
r , r = 0, . . . , � − 1, j = 0, 1, 2, . . . , m, which do

not depend on � (see (5) and (7)). This is true for each i ∈ {0, . . . , p − 1} and every convergent
subsequence of indices; therefore,

lim
k→∞ R

(i)
�+1,k = F

(i)
�+1, r = 0, . . . , �, j = 0, 1, 2, . . . , m,

as we needed to prove to conclude the induction and the proof of this lemma. �

Proof of Theorem 1.2. In the particular case when {Qn}∞n=0 is the sequence of monic polynomi-
als of multiple orthogonality associated to a system of measures (�1, . . . , �m) with respect to the
multi-indices n ∈ I, Lemma 3.2 gives the reciprocal of the Lemma 3.1 and Theorem 1.2 follows
combining these two lemmas. �

Proof of Corollary 1.3. Ratio asymptotic with period m for multiple orthogonal polynomials
associated with a Nikishin system such that �′

k > 0 almost everywhere in �k , k = 1, 2, . . . , m,
was proved in [5]. Therefore, Corollary 1.3 follows from that result and Theorem 1.2. �

Remark 3.1. The proof of Lemma 3.2 gives an algorithm for calculating the coefficients of the
functions Fi in terms of the limits (5). From the existence of the limit of the ratios of the orthogonal
polynomials it follows that Fj (x) = Fi(x), j = i mod p, i = 0, 1, . . . , p − 1. We can rewrite (8)
in the form

Fi(x) = x − a0
i,0 −

m∑
j=1

a0
i,−j

Fi−j (x)Fi−j+1(x) · · · Fi−1(x)

and from this equation we can lift the values of the Laurent expansion of the functions Fi(x),

i = 0, 1, . . . , p − 1, one at a time. They can be expressed as a sum of products of the limits (5).
Reciprocally, the proof of Lemma 3.1 shows how to calculate the limits in (5) if there is periodic
ratio asymptotic of the sequence of polynomials using their expansion at infinity.
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Remark 3.2. The assumptions of Theorem 1.2 imply

lim
n→∞

Qn+p(x)

Qn(x)
= F(x) =

p−1∏
i=0

Fi(x), K ⊂ C\�,

uniformly on each compact subset K ⊂ C\�.

4. Some extensions and examples

4.1. Extensions

Let (�1, . . . , �m) be a system of measures with constant sign on the real line and �k the smallest
interval containing supp(�k). Assume that these intervals are either non-intersecting or coincident
and that they are enumerated in such a way that

�̃1 = �1 = · · · = �m1 , . . . , �̃j = �m−mj +1 = · · · = �m,

where �̃i ∩ �̃k = ∅ and m1 + · · · + mj = m. Set m0 = 0. Assume that

d�m0+···+mk−1+i = gk,id�m0+···+mk−1+1, i = 2, . . . , mk, k = 1, . . . , j

(no relation is required for those k such that mk = 1) where the functions gk,i are continuous on

�̃k , respectively. Let the functions gk,i be such that for some n = (n1, . . . , nm) ∈ Zm+ and each
k = 1, . . . , j , the system of functions

{1, x, . . . , x
nm0+m1+···+mk−1+1−1

, gk,2, xgk,2, . . . , x
nm0+m1+···+mk−1+2−1

gk,2, . . . ,

gk,mk
, xgk,mk

, . . . , x
nm0+m1+···+mk−1+mk

−1
gk,mk

}
forms a Markov system on �̃k . When this is verified, we say that (�1, . . . , �m) satisfies the Markov
property with respect to n, and from the orthogonality relations it is easy to prove that n is strongly
normal and Qn has exactly nm1+···+mk−1+1 + · · · + nm1+···+mk−1+mk

simple zeros in the interior
of �̃k .

Notice that the Markov property does not depend on the actual measures with constant sign
�1, �m1+1, . . . , �m−mj +1, used in the construction of (�1, . . . , �m). If (�1, . . . , �m) satisfies the

Markov property with respect to n and nl , using Lemma 2.3 one obtains that the zeros of Qn
and Qnl interlace (automatically ((x − a)2 d�1(x), . . . , (x − a)2 d�m(x)) satisfies the Markov
property with respect to n for each a ∈ R).

Angelesco and Nikishin systems are limit cases in which the assumptions above may be verified.
In an Angelesco system �i = �̃i , i = 1, . . . , m, and the Markov property is trivially guaranteed
for any multi-index n = (n1, . . . , nm) ∈ Zm+ since

{1, . . . , xni−1}, i = 1, . . . , m,

is a Markov system on �i . In a Nikishin system �i = �̃1, i = 1, . . . , m, and the Markov
property was proved in [9, Theorem 2] for all n ∈ Zm+(∗) (for example, if n ∈ Zm+(�) one
takes g1,i = 〈�2, . . . , �i〉, i = 2, . . . , m). Intermediate cases arise in the generalized Nikishin
systems introduced in [12] which mix Angelesco and Nikishin systems. A simple case of such
mixed systems is obtained considering j (> 1) Nikishin systems constructed on j non-intersecting
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intervals of the real line. An example, not related with generalized Nikishin systems, may be built
taking gk,i(x) = e�k,ix , �k,i �= �k,l, i �= l, k = 1, . . . , j , where �k,i ∈ R. Here, the Markov
property is satisfied with respect to all n ∈ Zm+. The proof is straightforward fixing k, using
induction on mk , and Rolle’s Theorem to reduce the general case to the induction hypothesis by
taking derivatives.

We say that I ⊂ Zm+ is a complete sequence of multi-indices if | · | : I −→ Z+ is a bijection
where |n| = n1 + · · · + nm, n = (n1, . . . , nm) ∈ Zm+. On Zm+ we establish the following partial
order. We say that n1 = (n1

1, . . . , n
1
m) < n2 = (n2

1, . . . , n
2
m) if n1

k �n2
k, k = 1, . . . , m, with strict

inequality for at least one component.
Let I ⊂ Zm+ be a complete totally ordered sequence of multi-indices such that (�1, . . . , �m) ver-

ifies the Markov property for each n ∈ I. By Q|n| we denote the multiple orthogonal polynomial
relative to the given system of measures and the multi–index n ∈ I. Let n1 = (n1

1, . . . , n
1
m) ∈ I

be given. Assume that there exists a p ∈ Z+, |n1|−p�0, such that for each n = (n1, . . . , nm) ∈
I, |n|� |n1| − p − 1, we have that

nl + 2�n1
l , (10)

where l ∈ {1, . . . , m} is such that nl ∈ I and |n| + 1 = |nl |. If I = I, it is easy to verify that (10)
is satisfied with p = m. Nevertheless, there are sequences for which p �= m. For example, the
sequence

{(0, 0), (1, 0), (2, 0), (2, 1), (2, 2), (3, 2), (4, 2), (4, 3), . . .}
satisfies (10) with p = 3. Under (10) there exist complex numbers aj,k so that there is the
following relation between multiple orthogonal polynomials

xQ|n1| = Q|n1|+1 + a|n1|,|n1|Q|n1| + a|n1|,|n1|−1Q|n1|−1 + · · · + a|n1|,|n1|−pQ|n1|−p.

In fact, since deg Q|n| = |n| for each n ∈ I, it follows that

xQ|n1| = Q|n1|+1 + a|n1|,|n1|Q|n1| + a|n1|,|n1|−1Q|n1|−1 + · · · + a|n1|,0Q0 (11)

(Q0 ≡ 1). We must prove that if |n1|�p + 1 then a|n1|,k = 0 if 0�k� |n1| − p − 1. Let
l ∈ {1, . . . , m} be such that 0l ∈ I where 0 is the null vector. Integrating both sides of (11) with
respect to �l we obtain∫

xQ|n1|(x) d�l (x) = a|n1|,0
∫

d�l (x).

By assumption 1�n1
l − 1, so the integral on the left is equal to zero and so is a|n1|,0. Suppose we

have proved that a|n1|,k = 0 for all k such that 0�k�N −1 and N � |n1|−p−1. Let us show that
a|n1|,N = 0. Let n = (n1, . . . , nm) ∈ I be such that |n| = N . Then, there exists l ∈ {1, . . . , m}
such that nl ∈ I. Eliminate from (11) those terms which by the induction hypothesis we have
assumed that their coefficients vanish and integrate both sides of what remains with respect to
xnl d�l (x). It follows that∫

xnl+1Q|n1|(x) d�l (x) = a|n1|,N
∫

xnlQN(x) d�l (x). (12)

The integral on the right-hand side is different from zero. If this was not true from orthogonality we
would obtain that QN ≡ QN+1 which is absurd since deg QN < deg QN+1. On the other hand,
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the integral on the right-hand side equals zero since by assumption nl + 1�n1
l − 1. Therefore,

a|n1|,N = 0 as needed. What we have just proved has the following immediate consequence.

Proposition 4.1. Let I ⊂ Zm+ be a complete totally ordered sequence of multi-indices such that
(10) takes place for all n1 ∈ I, |n1| − p�0, where p ∈ N is fixed. Let (�1, . . . , �m) be a
system of measures which satisfies the Markov property with respect to each n ∈ I. Then, the
corresponding sequence of multiple orthogonal polynomials satisfies a p + 2 term recurrence
relation and consecutive polynomials interlace their zeros; consequently, Theorems 1.1 and 1.2
hold true.

If additional to (10) we have that for some n ∈ I, |n| = |n1|−p, nl +1 = n1
l and nl

1 is normal
with respect to (�1, . . . , �m), then a|n1|,|n1|−p �= 0 since the integral to the left of (12) must be
different from zero.

4.2. Calculation of limits for m = 2. Nikishin systems

In this subsection we give some formulas related with the calculation of the limits of the
recurrence coefficients in a Nikishin system when m = 2. We use the ratio asymptotic of multiple
orthogonal polynomials obtained in [5]. Let us recall some results from [5]. Suppose we have a
system of two intervals �1, �2 (�1 ∩ �2 = ∅) and two measures �1, �2 with supp(�j ) ⊂ �j and
take (�1, �2) = N (�1, �2), where

d�1(x) = d�1(x), d�2(x) =
(∫

�2

d�2(t)

t − x

)
d�1(x), x ∈ �1.

In the sequel we restrict to multi-indices in I ⊂ Z2+.
Algebraic functions. The ratio asymptotic of multiple orthogonal polynomials Qn is given

in terms of some algebraic functions of order 3. To introduce these functions we consider the
3-sheeted Riemann surface

R =
2⋃

k=0

Rk,

formed by the consecutively “glued’’ sheets

R0 := C\�1, R1 := C\�1 ∪ �2, R2 := C\�2,

where the upper and lower banks of the slits of two neighboring sheets are identified. Let 	(l),
l = 1, 2 be a single valued algebraic function on R whose divisor consists of one simple zero at
the point ∞(0) ∈ R0 and one simple pole at the point ∞(l) ∈ Rl . Denote by 	(l)

j , j = 0, 1, 2

the branches of the algebraic function 	(l) corresponding to the different sheets Rj . Suppose we

have the following power series expansions of the functions 	(l)
j at infinity:

	(1)
0 (z) = c

(1)
0

z
+ c

(1)
3

z2
+ O

(
1

z3

)
, 	(1)

1 (z) = c
(1)
1 z + c

(1)
4 + O

(
1

z

)
,

	(1)
2 (z) = c

(1)
2 + c

(1)
5

z
+ O

(
1

z2

)
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and

	(2)
0 (z) = c

(2)
0

z
+ c

(2)
3

z2
+ O

(
1

z3

)
, 	(2)

1 (z) = c
(2)
1 + c

(2)
4

z
+ O

(
1

z2

)
,

	(2)
2 (z) = c

(2)
2 z + c

(2)
5 + O

(
1

z

)
.

This Riemann surface is of genus 0 and any standard symmetric function of the branches 	(l)
j (z),

j = 1, 2, 3, is a polynomial on the Riemann sphere C. In particular, for l = 1, 2 one has⎧⎪⎪⎪⎨⎪⎪⎪⎩
	(l)

0 + 	(l)
1 + 	(l)

2 = Alz + Bl,

	(l)
0 	(l)

1 + 	(l)
0 	(l)

2 + 	(l)
1 	(l)

2 = Clz + Dl,

	(l)
0 	(l)

1 	(l)
2 = El,

where

A1 = c
(1)
1 , B1 = c

(1)
2 + c

(1)
4 , C1 = c

(1)
1 c

(1)
2 ,

D1 = c
(1)
0 c

(1)
1 + c

(1)
1 c

(1)
5 + c

(1)
2 c

(1)
4 , E1 = c

(1)
0 c

(1)
1 c

(1)
2

and

A2 = c
(2)
2 , B2 = c

(2)
1 + c

(2)
5 , C2 = c

(2)
1 c

(2)
2 ,

D2 = c
(2)
0 c

(2)
2 + c

(2)
1 c

(2)
5 + c

(2)
2 c

(2)
4 , E2 = c

(2)
0 c

(2)
1 c

(2)
2 .

Then, the functions 	(l)(z) satisfy the following algebraic equations:

�3 − (Alz + Bl)�
2 + (Clz + Dl)� − El = 0, l = 1, 2.

Notice that it is easy to find the constants c
(l)
j , j = 0, 1, . . . , 5 from the coefficients Al , Bl , Cl ,

Dl , El . In fact

c
(1)
0 = E1

C1
, c

(1)
1 = A1, c

(1)
2 = C1

A1
, c

(1)
3 = −E1

C2
1

[
D1 − E1

A1

C1

]
,

c
(1)
4 = B1 − C1

A1

and

c
(2)
0 = E2

C2
, c

(2)
1 = C2

A2
, c

(1)
2 = A2, c

(2)
3 = −E2

C2
2

[
D2 − E2

A2

C2

]
,

c
(2)
5 = B2 − C2

A2
.

Ratio asymptotic. For a given function F which has a Laurent expansion at infinity of the form
F(z) = Czk + O(zk−1), C �= 0, k ∈ Z, we define F̃ := F/C. One of the main results of [5]
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applied to the case m = 2 with �′
j > 0 a.e. on �j , j = 1, 2, states that the following ratio

asymptotic holds uniformly on a compact subsets of C\�1:

lim
k→∞

Q2k+1

Q2k

= 	̃
(1)

1 	̃
(1)

2 = 1

	̃
(1)

0

, lim
k→∞

Q2k

Q2k−1
= 	̃

(2)

1 	̃
(2)

2 = 1

	̃
(2)

0

and

lim
k→∞

Q2k+1

Q2k−1
= 1

	̃
(1)

0 	̃
(2)

0

, lim
k→∞

Q2k+2

Q2k

= 1

	̃
(1)

0 	̃
(2)

0

.

By Theorem (1.2), we conclude that

lim
k→∞ a2k+i,2k+i−j = aN

i,−j , i = 0, 1, j = 0, 1, 2,

where the upper index N stands for Nikishin system.
Calculation of the limits. For a given n we write down the recurrence equation at three different

points x0, x1, x2 of C\�1

an,nQn(xs) + an,n−1Qn−1(xs) + an,n−2Qn−2(xs) = xsQn(xs) − Qn+1(xs),

s = 0, 1, 2.

Then we divide the equations by Qn(xs) and make n → ∞ in two different ways: n = 2k,
n = 2k + 1. In the limit, we obtain two systems of equations, one system for the limit values aN

0,0,

aN
0,−1, aN

0,−2 and another one for the limit values aN
1,0, aN

1,−1, aN
1,−2:

aN
0,0 + aN

0,−1	̃
(2)

0 (xs) + aN
0,−2(	̃

(1)

0 	̃
(2)

0 )(xs) = xs − (	̃
(1)

1 	̃
(1)

2 )(xs), s = 0, 1, 2

and

aN
1,0 + aN

1,−1	̃
(1)

0 (xs) + aN
0,−2(	̃

(1)

0 	̃
(2)

0 )(xs) = xs − (	̃
(2)

1 	̃
(2)

2 )(xs), s = 0, 1, 2.

By Crammer’s rule, one can write the solution of each system of equations as the ratio of some
determinants of order 3. Now, we make xs → ∞ in the following ways: x0 → ∞0 ∈ R0,
x1 → ∞1 ∈ R1, x2 → ∞2 ∈ R2. The value of the determinants when xs → ∞s , s = 0, 1, 2,
gives the following.

Lemma 4.1. Let �′
j > 0 a.e. on �j , j = 1, 2. We have

aN
0,0 = c

(1)
3

c
(1)
0

, aN
0,−1 =

[
c
(2)
0

c
(2)
2

− c
(1)
2 c

(2)
0

c
(1)
1 c

(2)
1

]
, aN

0,−2 = c
(1)
0 c

(2)
0

c
(1)
1 c

(2)
1

,

aN
1,0 = c

(2)
3

c
(2)
0

, aN
1,−1 =

[
c
(1)
0

c
(1)
1

− c
(1)
0 c

(2)
1

c
(1)
2 c

(2)
2

]
, aN

1,−2 = c
(1)
0 c

(2)
0

c
(1)
2 c

(2)
2

.

These formulas imply
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Corollary 4.1. Let �′
j > 0 a.e. on �j , j = 1, 2. In terms of the coefficients of the algebraic

equations satisfied by the functions 	(l), l = 1, 2 one has

aN
0,0 = − 1

C1

[
D1 − E1

A1

C1

]
, aN

0,−1 =
[

E2

A2C2
− E2A2C1

A2
1C

2
2

]
, aN

0,−2 = E1A2E2

A1C1C
2
2

,

aN
1,0 = − 1

C2

[
D2 − E2

A2

C2

]
, aN

1,−1 =
[

E1

A1C1
− E1A1C2

A2
2C

2
1

]
, aN

1,−2 = E1A1E2

A2C2C
2
1

.

4.3. Calculation of limits for m = 2. Angelesco systems

This is the case, when the supports of the measures �1 and �2 are disjoint intervals I1 = [u1, v1],
I2 = [u2, v2], u1 < v1 �u2 < v2. When �j ∈ Reg on Ij , j = 1, 2 (for the definition of the
class Reg of measures see [16]), the weak asymptotic of multiple orthogonal polynomials [11] is
determined by an equilibrium problem for a vector potential in the presence of an external field.
The supports of the measures which solve this equilibrium problem may not coincide with the
intervals I1, I2 (see [2] for more details). Denote these supports by �1, �2.

Algebraic functions. It is known that strong asymptotic (see [3]) and ratio asymptotic (see [13])
in this case is related with the same Riemann surface R as the one defined above for a Nikishin
system associated with �1, �2, but the algebraic functions are different. Let 
(0) be a single valued
algebraic function on R whose divisor consists of one simple pole at the point ∞(0) ∈ R0 and
one simple zero at the point ∞(1) ∈ R1 and 
(2) be a single valued algebraic function on R
whose divisor consists of one simple pole at the point ∞(2) ∈ R2 and one simple zero at the point
∞(1) ∈ R1. Denote by 
(0)

j , j = 0, 1, 2, and 
(2)
j , j = 0, 1, 2, the branches of the algebraic

functions 
(0), 
(2) corresponding to the different sheets Rj . Suppose we have the following

power series expansions of the functions 
(l)
j at infinity:


(0)
0 (z) = s

(0)
0 z + s

(0)
3 + O

(
1

z

)
, 
(0)

1 (z) = s
(0)
1

z
+ s

(0)
4

z2
+ O

(
1

z3

)
,


(0)
2 (z) = s

(0)
2 + s

(0)
5

z
+ O

(
1

z2

)
and


(2)
0 (z) = s

(2)
0 + s

(2)
3

z
+ O

(
1

z2

)
, 
(2)

1 (z) = s
(2)
1

z
+ s

(2)
4

z2
+ O

(
1

z3

)
,


(2)
2 (z) = s

(2)
2 z + s

(2)
5 + O

(
1

z

)
.

The Riemann surface is of genus 0 and any standard symmetric function of the branches 
(l)
j (z),

j = 0, 1, 2, is a polynomial on the Riemann sphere C. In particular one has⎧⎪⎪⎪⎨⎪⎪⎪⎩

(0)

0 + 
(0)
1 + 
(0)

2 = A0z + B0,


(0)
0 
(0)

1 + 
(0)
0 
(0)

2 + 
(0)
1 
(0)

2 = C0z + D0,


(0)
0 
(0)

1 
(0)
2 = E0,
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(2)

0 + 
(2)
1 + 
(2)

2 = A3z + B3,


(2)
0 
(2)

1 + 
(2)
0 
(2)

2 + 
(2)
1 
(2)

2 = C3z + D3,


(2)
0 
(2)

1 
(2)
2 = E3,

where

A0 = s
(0)
0 , B0 = s

(3)
3 + s

(0)
2 , C0 = s

(0)
0 s

(0)
2 ,

D0 = s
(0)
0 c

(0)
5 + s

(0)
3 s

(0)
2 + s

(0)
0 s

(0)
1 , E0 = s

(0)
0 s

(0)
1 s

(0)
2 ,

and

A3 = s
(2)
2 , B3 = s

(2)
0 + s

(2)
5 , C3 = s

(2)
0 s

(2)
2 ,

D3 = s
(2)
0 s

(2)
5 + s

(2)
3 s

(2)
2 + s

(2)
1 s

(2)
2 , E3 = s

(2)
0 s

(2)
1 s

(2)
2 .

Thus, the functions 
(0)(z) and 
(2)(z) satisfy the following algebraic equations:

�3 − (A0z + B0)�
2 + (C0z + D0)� − E0 = 0,

�3 − (A3z + B3)�
2 + (C3z + D3)� − E3 = 0.

It is easy to find the constants s
(l)
j , j = 0, 1, . . . , 5, from the coefficients Al , Bl , Cl , Dl , El .

In fact,

s
(0)
0 = A0, s

(0)
1 = E0

C0
, s

(0)
2 = C0

A0
, s

(0)
3 = B0 − C0

A0
,

s
(0)
4 = −E0

C2
0

[
D0 − E0

A0

C0

]
,

and

s
(2)
0 = C3

A3
, s

(2)
1 = E3

C3
, s

(2)
2 = A3, s

(2)
4 = −E3

C2
3

[
D3 − E3

A3

C3

]
,

s
(2)
5 = B3 − C3

A3
.

Ratio asymptotic. For a given function F which has a Laurent expansion at infinity of the form
F(z) = Czk + O(zk−1), C �= 0, k ∈ Z, we define as above F̃ := F/C. If the measures �1, �2
satisfy Szegő’s condition on I1, I2 it is known (see [2,13]) that we have ratio asymptotic for the
multiple orthogonal polynomials Qn, uniformly on a compact subsets of C\�1 ∪ �2

lim
k→∞

Q2k

Q2k+1
= 
̃

(0)

1 , lim
k→∞

Q2k−1

Q2k

= 
̃
(2)

1 ,

and

lim
k→∞

Q2k−1

Q2k+1
= 
̃

(0)

1 
̃
(2)

1 , lim
k→∞

Q2k

Q2k+2
= 
̃

(0)

1 
̃
(2)

1 .
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By Theorem (1.2), we conclude that

lim
k→∞ a2k+i,2k+i−j = aA

i,−j , i = 0, 1, j = 0, 1, 2,

where the upper index A stands for Angelesco system.
Calculation of limits. For a given n, we write down the recurrence equation at three different

points x0, x1, x2 from C\�1 ∪ �2

an,nQn(xs) + an,n−1Qn−1(xs) + an,n−2Qn−2(xs) = xsQn(xs) − Qn+1(xs),

s = 0, 1, 2.

Divide the equations by Qn(xs) and let n → ∞ in two different ways: n = 2k, n = 2k + 1. At
the limit, we obtain two systems of equations, one system for the limit values aA

0,0, aA
0,−1, aA

0,−2

and another one for the limit values aA
1,0, aA

1,−1, aA
1,−2. Namely,

aA
0,0 + aA

0,−1
̃
(2)

1 (xs) + aA
0,−2
̃

(0)

1 
̃
(2)

1 (xs) = xs − 1


̃
(0)

1 (xs)
, s = 0, 1, 2,

and

aA
1,0 + aA

1,−1
̃
(0)

1 (xs) + aA
0,−2
̃

(0)

1 
̃
(2)

1 (xs) = xs − 1


̃
(2)

1 (xs)
, s = 0, 1, 2.

By Crammer’s rule, one can write the solutions of each system of equations as the ratio of some
determinants of order 3. Now, let xs → ∞ in the following ways: x0 → ∞0 ∈ R0, x1 → ∞1 ∈
R1, x2 → ∞2 ∈ R2. The limit values of the determinants as xs → ∞s , s = 0, 1, 2, give

Lemma 4.2. Let �1, �2 satisfy Szegő’s condition on I1, I2, respectively. Then

aA
0,0 = s

(0)
4

s
(0)
1

, aA
0,−1 =

[
s
(2)
1

s
(2)
2

− s
(0)
2 s

(2)
1

s
(0)
0 s

(2)
0

]
, aA

0,−2 = s
(0)
1 s

(2)
1

s
(0)
0 s

(2)
0

,

aA
1,0 = s

(2)
4

s
(2)
1

, aA
1,−1 =

[
s
(0)
1

s
(0)
0

− s
(0)
1 s

(2)
0

s
(0)
2 s

(2)
2

]
, aA

1,−2 = s
(0)
1 s

(2)
1

s
(0)
2 s

(2)
2

.

From these formulas one obtains

Corollary 4.2. Let �1, �2 satisfy Szegő’s condition on I1, I2, respectively. Then, in terms of the
coefficients of the algebraic equations satisfied by the functions 
(l), l = 0, 2 one has

aA
0,0 = − 1

C0

[
D0 − E0

A0

C0

]
, aA

0,−1 =
[

E3

A3C3
− E3A3C0

A2
0C

2
3

]
, aA

0,−2 = E0A3E3

A0C0C
2
3

,

aA
1,0 = − 1

C3

[
D3 − E3

A3

C3

]
, aA

1,−1 =
[

E0

A0C0
− E0A0C3

A2
3C

2
0

]
, aA

1,−2 = E0A0E3

A3C3C
2
0

.
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4.4. Connection between Angelesco and Nikishin systems for m = 2

There exists a clear connection between the functions 
(0), 
(2) and 	(1), 	(2). Indeed, the
function 1/
(0) is holomorphic on R, has only one zero at ∞0 and only one pole at ∞1; that is,
the same divisor as the function 	(1). The function 
(2) − 
(2)

0 (∞) has only one zero at ∞0 and
only one pole at ∞2; that is, the same divisor as the function 	(1). This implies the relations

	(1) = C1
1


(0)
, 	(2) = C2(


(2) − 
(2)
0 (∞)),

where C1, C2 are appropriate constants. Therefore, if we know the power series expansions for one
case (Angelesco or Nikishin) we can find the power series expansions and limits of the recurrence
coefficients for the other case. This idea is applied in the next subsection to get the explicit values
of the limits in one interesting situation.

4.5. A particular case for m = 2

There is a particular type of Angelesco system where all can be calculated explicitly. This allows
us to find the limits of the recurrence coefficients for the associated Nikishin systems. Consider
two intervals I1 = [a, 0], I2 = [0, 1] with −1�a < 0 and two measures �1, �2 satisfying
Szegő’s conditions on I1, I2. It is shown in [13] that the recurrence coefficients in this case are
limit periodic with the period 2. More precisely, in [14] the following formulas were obtained
(the upper index A stands for Angelesco system):

aA
0,0 = a + 1

3
− 2

9
R, aA

1,0 = a + 1

3
+ 2

9
R,

aA
0,−1 = 4

81
R2, aA

1,−1 = 4

81
R2,

aA
0,−2 = 4

729
(K + 2R3), aA

1,−2 = 4

729
(K − 2R3),

where R := √
a2 − a + 1, and K := 2a3 − 3a2 − 3a + 2.

The Riemann surface R in this case is associated with the intervals �1 = [a, 0], �2 = [xa, 1],
where xa = (a + 1)3/9(a2 − a + 1). The function w := 1/(
(0)
(2)) is holomorphic on the
Riemann surface R and satisfies the algebraic equation

w3 − P1(x)w2 + P2(x)w − P3 = 0, (13)

where

P1(x) := [x2 − (2/3)(1 + a)x − (1/27)(a2 − 10a + 1)],
P2(x) := −(2/9)3[(a3 − 4a2 + a) + (−2 + 3a + 3a2 − 2a3)x],
P3(z) := −2(2/27)3(a2 − 2a3 + a4).

The function w(x) has its branch points at a, 0, 1, and at the point xa . All these branch points
are of second order. One branch of w(x) has a pole of order 2 at infinity and the two other
branches have there simple zeros. If we denote the branches by w0(x), w1(x), and w2(x), then
w1(x) is meromorphic in the extended complex plane C with cuts over [a, 0] and [xa, 1], w0(x) is



368 A.I. Aptekarev et al. / Journal of Approximation Theory 139 (2006) 346–370

holomorphic in C with a cut over [a, 0] and w2(z) is holomorphic in C with a cut over [xa, 1]. The
system of equations relating the limits of the recurrence coefficients for the Angelesco system and
the functions 
(0), 
(2), takes the following form (the upper index A means Angelesco system):

1 + aA
0,0


(0)
1 (x) + aA

0,−1

(0)
1 
(2)

1 (x) + aA
0,−2


(0)
1 
(2)

1 
(0)
1 (x) = x
(0)

1 (x),

1 + aA
1,0


(2)
1 (x) + aA

1,−1

(2)
1 
(0)

1 (x) + aA
1,−2


(2)
1 
(0)

1 
(2)
1 (x) = x
(2)

1 (x).

This implies the formulas


(0) = w + a0,−1

(x − a0,0)w − a0,−2
, 
(2) = w + a1,−1

(x − a1,0)w − a1,−2
.

Calculating the power series expansions of the functions 
(0), 
(2) at the points ∞0, ∞1, ∞2 and
using Lemmas 4.1 and 4.2, we obtain

Corollary 4.3. For any Nikishin system N (�1, �2) associated with the system of intervals
�1 = [a, 0], �2 = [xa, 1] such that �′

j > 0 a.e. on �j , j = 1, 2, we have

aN
0,0 = − 1

36R2
[K − 12(a + 1)R2 + 10R3], aN

1,0 = − 1

18R2
[K − 6(a + 1)R2 + 4R3],

aN
0,−1 = − 1

362R4
(−K+2R3)(K−14R3), aN

1,−1 = − 1

362R4
(−K+2R3)(K−14R3),

aN
0,−2 = − 1

36 · 81R3
(−K + 2R3)2, aN

1,−2 = − 1

363R6
(−K + 2R3)2(K + 2R3).

This corollary follows from the following formulas for the coefficients of the power series
expansions at infinity of the functions 
(0) and 
(2)

c
(0)
0 = 1

81R
(−K + 2R3), c

(0)
3 = − 1

36 · 81R3
[K−12(a+1)R2+10R3](−K + 2R3),

c
(1)
1 = 1, c

(0)
4 = −1

3
(a + 1) + 2

9
R,

c
(0)
2 = 4

9
R, c

(0)
5 = 1

81R
(K + 2R3),

c
(2)
0 = − 1

16R3
(−K + 2R3), c

(2)
3 = 1

288R5
[K − 6(a + 1)R2 + 4R3](−K + 2R3),

c
(2)
1 = 9

4R
, c

(2)
4 = 1,

c
(2)
2 = 81

R

K + 2R3
, c

(2)
5 = −9

4

[−K + 12(a + 1)R2 + 10R3]
R(K + 2R3)

+ 9

4R
.

With this result, we obtain immediately the coefficients of the algebraic equations for the functions
	(1) and 	(2). They are

A1 = 1, B1 = −1

3
(a + 1) + 2

3
R, C1 = 4

9
R, D1 = − 4

27
R(a + 1 − R),

E1 = 4

93
(−K + 2R3),
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A2 = 81R

K + 2R3
, B2 = −27

4

[−K + 4(a + 1)R2 + 2R3]
R(K + 2R3)

, C2 = 93

4

1

(K + 2R3)
,

D2 = 243

16

[K − 4(a + 1)R2 + 2R3]
R2(K + 2R3)

, E2 = −
(

9

4

)3
(−K + 2R3)

R3(K + 2R3)
.

Example. Consider two intervals �1 = [−1, 0] and �2 = [0, 1]. In this case a = −1. The
reference Hessenberg operators are then defined for Angelesco and Nikishin systems as follows

A0
Ang =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−� 1 0 0 . . . 0

�2 � 1 0 . . . 0

−�3 �2 −� 1 . . . 0

0 �3 �2 � . . . 0

. . . . . . . . . . . . . . . . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

A0
Nik =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 5
4 � 1 0 0 . . . 0

7
16 �2 −� 1 0 . . . 0

− 1
8 �3 7

16 �2 − 5
4 � 1 . . . 0

0 − 1
64 �3 7

16 �2 −� . . . 0

. . . . . . . . . . . . . . . . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where � = 2/(3
√

3). The algebraic equations for the functions 	(1) and 	(2) take the form

�3 −
(

x + 2

3

√
3

)
�2 +

(
4

9

√
3x + 4

9

)
� − 8

243

√
3 = 0

and

�3 −
(

27

2
x − 9

4

√
3

)
�2 +

(
81

8

√
3x + 81

16

)
� + 81

64

√
3 = 0.
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